Липиды: гидрофобные молекулы. урок 11

Что такое клеточная мембрана

Клеточная мембрана — это биологическая мембрана, которая отделяет внутреннюю часть клетки от внешней среды. Клеточная мембрана также называется плазматическая мембрана а также цитоплазматическая мембрана, Он избирательно проницаем для таких веществ, как ионы и органические молекулы. Клеточная мембрана поддерживает постоянную среду внутри протоплазмы, контролируя проникновение веществ внутрь и наружу клетки. Это также защищает клетку от окружающей среды.

Структура клеточной мембраны

Структура мембраны описывается моделью жидкостной мозаики. Клеточная мембрана состоит из липидного бислоя со встроенными в него белками. Липидный бислой рассматривается как двумерная жидкость, в которой молекулы липида и белка более или менее легко диффундируют в нем. Образуется при самосборке липидных молекул. Эти липиды являются амфипатическими фосфолипидами. Их гидрофобные «хвостовые» области скрыты от окружающей воды или гидрофильной среды двухслойной структурой. Таким образом, гидрофильные головки взаимодействуют с внутриклеточными / цитозольными или внеклеточными лицами. Благодаря этому образуется непрерывный сферический липидный бислой. Следовательно, гидрофобные взаимодействия рассматриваются как основные движущие силы для образования липидного бислоя.

Структура липидного бислоя предотвращает проникновение полярных растворенных веществ в клетку. Но пассивная диффузия неполярных молекул разрешена. Следовательно, трансмембранные белки функционируют либо как поры, каналы или ворота для диффузии полярных растворенных веществ. Фосфатидилсерин концентрируется на мембране, чтобы создать дополнительный барьер для заряженных молекул.

Мембранные структуры, такие как подосома, кавеола, очаговая адгезия, инвадоподиум и различные типы клеточных соединений, присутствуют в мембране. Это называется «supramembrane”Структуры, которые обеспечивают связь, клеточную адгезию, экзоцитоз и эндоцитоз. Под клеточной мембраной цитоскелет находится в цитоплазме. Цитоскелет обеспечивает леса для закрепления мембранных белков. Подробная схема клеточной мембраны показана на Рисунок 1. 

Рисунок 1: Подробная схема клеточной мембраны

Состав клеточной мембраны

Клеточная мембрана в основном состоит из липидов и белков. В клеточной мембране можно найти три класса амфипатических липидов: фосфолипиды, гликолипиды и стеролы. Фосфолипиды являются наиболее распространенным типом липидов среди них. Холестерин обнаружен диспергированным по всей мембране в клетках животных.

Липосомы найдены ли липидные везикулы в клеточной мембране; они заключены в круглые карманы липидным бислоем. Углеводы можно найти в виде гликопротеинов и гликолипидов. 50% клеточной мембраны состоит из белков. Белки могут быть обнаружены в мембране трех типов: цельные или трансмембранные белки, закрепленные на липидах белки и периферические белки.

Функция клеточной мембраны

Клеточная мембрана физически отделяет цитоплазму от ее внеклеточной среды. Он также закрепляет цитоскелет, обеспечивая форму клетки. С другой стороны, клеточная мембрана прикрепляется к другим клеткам ткани, обеспечивая механическую поддержку клетки.

Клеточная мембрана избирательно проницаема, регулируя постоянную внутреннюю среду для функционирования клетки. Движение через клеточную мембрану может происходить как при пассивной, так и при активной диффузии. Четыре клеточных механизма могут быть идентифицированы в клеточной мембране. Небольшие молекулы, такие как углекислый газ, кислород и ионы, перемещаются через мембрану путем пассивного осмоса и диффузии. Питательные вещества, такие как сахар, аминокислоты и метаболиты, перемещаются пассивно через трансмембранные белковые каналы. Аквапорины являются своего рода белковыми каналами, которые транспортируют воду путем облегченной диффузии. Поглощение молекул в клетку путем их поглощения называется эндоцитозом. Твердые частицы поглощаются фагоцитозом, а небольшие молекулы и ионы поглощаются пиноцитозом. Некоторые непереваренные остатки удаляются из клетки путем инвагинации и образования пузырька. Этот процесс называется экзоцитозом.

Характеристика мембранных белков

  1. структурные;

  2. каталитические;

  3. рецепторные;

  4. транспортные.

Углеводы в составе мембран не представлены самостоятельными соединениями, а обнаруживаются только в соединении с белками (гликопротеины) или липидами (гликолипиды). Длина углеводных цепей колеблется от двух до восемнадцати остатков моносахаридов. Большая часть углеводов расположена на наружной поверхности плазматической мембраны. Функции углеводов в биомембранах – контроль за межклеточными взаимодействиями, поддержание иммунного статуса, рецепция, обеспечение стабильности белковых молекул в мембране.

Транспорт через мембраны: активный, пассивный.

Белки-переносчики

Активный транспорт — перенос вещества через клеточную или внутриклеточную мембрану (трансмембранный А.т.) или через слой клеток (трансцеллюлярный А.т.), протекающий против электрохимического градиента, т. е. с затратой свободной энергии организма. В большинстве случаев, но не всегда, источником энергии служит энергия макроэргических связей АТФ. Различные транспортные АТФазы, локализованные в клеточных мембранах и участвующие в механизмах переноса веществ, являются основным элементом молекулярных устройств — насосов, обеспечивающих избирательное поглощение и откачивание определенных веществ (например, электролитов) клеткой. Активный специфический транспорт неэлектролитов (молекулярный транспорт) реализуется с помощью нескольких типов молекулярных машин — насосов и переносчиков. Транспорт неэлектролитов (моносахаридов, аминокислот и других мономеров) может сопрягаться с симпортом — транспортом другого вещества, движение которого по градиенту концентрации является источником энергии для первого процесса. Симпорт может обеспечиваться ионными градиентами (например, натрия) без непосредственного участия АТФ.

Биологические функции липидов

  1. Энергетическая. В количественном отношении липиды – основной энергетический резерв организма. Они содержатся в клетках в виде жировых капель, служащих «метаболическим топливом». Липиды окисляются в митохондриях до воды и диоксида углерода с образованием большого количества АТФ.

При полном окислении 1 г жиров до углекислого газа и воды выделяется около 39 кДж энергии, что намного больше по сравнению с полным окислением такого же количества углеводов. Это дает возможность животным, впадающим в спячку, расходовать накопленные летом и осенью жировые запасы для поддержания процессов жизнедеятельности в зимний период. Высокое содержание липидов в семенах растений обеспечивает энергией развитие зародыша и проростка, пока он не перейдет к самостоятельному питанию.

  1. Структурная (строительная). Ряд липидов принимает участие в построении клеточных мембран. Типичными мембранными липидами являются фосфолипиды, гликолипиды и холестерин. Интересно, что мембраны совсем не содержат жиров.
  2. Изолирующая (защитная). Жировые отложения в подкожной ткани и вокруг различных органов обладают высокими теплоизолирующими свойствами, благодаря тому, что жиры плохо проводят тепло. У синего кита толщина подкожного жирового слоя превышает 50 см, доходя до 1 м, поэтому он может жить в холодных водах.

Липиды предохраняют внутренние органы от механических повреждений (например, почки человека покрыты жировым слоем, защищающим их от травм, сотрясения при ходьбе и прыжках), так они выполняют роль амортизатора.

Как основной компонент клеточной мембраны липиды изолируют внутреннюю часть клетки от окружающей среды и за счёт гидрофобных свойств обеспечивают образование мембранных потенциалов.

Воск покрывает тонким слоем листья растений, не давая им намокать во время обильных дождей, препятствуя испарению воды в жарком климате.

У водоплавающих птиц и некоторых зверей воски выделяются специальными железами и служат смазкой для перьев и волос, придавая им водоотталкивающие свойства.

Миелиновые липиды в мембранах шванновских клеток образуют оболочку вокруг аксонов нейронов, за счёт этого мембрана поверхности нервной клетки электрически изолируется и импульсы по ней проходят намного быстрее.

  1. Сигнальная (регуляторная). Стероиды, эйкозаноиды и некоторые метаболиты фосфолипидов выполняют сигнальные функции. Они служат в качестве гормонов, медиаторов и вторичных переносчиков (мессенжеров). Половые гормоны и кортикостероиды регулируют процессы развития и размножения, обмена веществ.

Витамины группы D, которые являются производными холестерина, играют важную роль в обмене кальция и фосфора. Другие витамины липидной природы: А, Е, К. Желчные кислоты участвуют в пищеварении: они обеспечивают эмульгирование жиров пищи и всасывание продуктов их расщепления.

  1. Запасающая. Жиры служат источником энергии и воды в клетках. Они хранятся в жировых депо: капли жира внутри клетки, жировые тела насекомых, подкожная клетчатка. При окислении 100 г жиров выделяется 107 мл воды. Благодаря эндогенному образованию воды в пустыне могут жить многие животные, например песчанки и тушканчики. С этим связано накопление жира в горбах верблюда.

Развитие эмбрионов птиц и рептилий в яйце при запасе энергии и воды в виде жира, образуется в результате окисления из запасов в желтке. Киты не могут пить солёную воду, которой они окружены, и полагаются полностью на метаболическую воду.

  1. Другие функции липидов. Отдельные липиды выполняют роль «якоря», удерживающего на мембране белки и другие соединения. Некоторые являются кофакторами, принимающими участие в ферментативных реакциях, например в свёртывании крови или в трансмембранном переносе электронов.

Светочувствительный каротиноид ретиналь играет центральную роль в процессе зрительного восприятия.

Жиры способствуют плавучести водных животных от мельчайших диатомовых водорослей, до китов.

Поскольку некоторые липиды не синтезируются в организме человека, они должны поступать с пищей в виде незаменимых жирных кислот и жирорастворимых витаминов. (рис.) Ненасыщенные жирные кислоты – арахидоновая, линолевая и линоленовая. Линолевая и линоленовая кислоты могут превращаться в арахидоновую за счёт наращивания цепи и, следовательно, являются её заменителями.

Функции

Липиды распределены в каждой клетке организма, но у каждых из них есть свои определенные функциональные обязанности, которые они выполняют. Существуют основные обязанности, это те функции, что выполняют липидные соединения, а дополнительные функции, это те, в которых липиды являются помощниками.

Функции липидных соединений:

Энергетическая функция.

Липидные соединения в процессе распадения выделяют много энергии, которая необходима организму:

  • Для контролирования процесса поступления в клетки организма молекул кислорода;
  • Формирование и обеспечение клеток питательными веществами;
  • Корректирование дыхания и роста клеток.

Резервная функция липидов в организме.

Липидные соединения откладываются в подкожной клетчатке и обеспечивают запас жира в организме на случай непредвиденных ситуаций:

  • В период беременности женщин, липиды обеспечивают развитие плода;
  • При резком похудении, жиры восполняют запас жира из резерва, чтобы поддержать внутренние органы.

Теплорегулирующая функция позволяет организму справляться с перепадами температурного режима, и поддерживать необходимо температуру внутри тела, независимо от температуры окружающей среды.

Липид является основной частью мембран клеток организма, и в этом заключается основная структурная функция. Без липопротеидов, которые доставляют в клетки молекулы холестерола, структурная функция не могла бы выполняться.

Липопротеиды — это основные транспортные перевозчики жира по организму, поэтому они выполняют транспортную функцию липидных соединений.

К второстепенным функциям липидных соединений относятся:

Ферментативная второстепенная функциональная обязанность липида:

  • Защита слизистой тонкого кишечника от чрезмерного влияния на расщепление липидов ферментов, вырабатываемых клетками поджелудочной железы;
  • Уничтожение лишних ферментов происходит при помощи молекул фосфолипидов и холестерола.

Сигнальную функцию выполняют молекулы гликолипиды:

  • Передача импульсов между волокнами нервной системы, а также между головным и спинным мозгом при помощи цереброспинальной жидкости;
  • Распознавание импульсов на внутриклеточном уровне, которые подают липидоподобные соединения для выявления необходимых веществ для клетки.

Регуляторные обязанности липидов в организме:

  • Регуляторная политика липида в клеточной мембране — это режим пропуска полезных элементов в клетку;
  • Синтезирование гормонов в организме регулирующих репродуктивную функцию у человека;
  • Регулирование защиты организма при помощи функционировании иммунной системы.

Функции фосфолипидов

Фосфорсодержащие жиры принадлежат к незаменимым для человека соединениям. Организм не способен вырабатывать эти вещества самостоятельно, но, меж тем, функционировать без них также не сможет.

Фосфолипиды необходимы человеку, поскольку:

  • обеспечивают мембранам гибкость;
  • восстанавливают поврежденные стенки клеток;
  • играют роль клеточных барьеров;
  • растворяют «плохой» холестерин;
  • служат профилактикой сердечно-сосудистых заболеваний (особенно атеросклероза);
  • способствуют правильному сворачиванию крови;
  • поддерживают здоровье нервной системы;
  • обеспечивают передачу сигналов от нервных клеток к головному мозгу и обратно;
  • благотворно влияют на работу органов пищеварения;
  • очищают печень от токсинов;
  • оздоровляют кожу;
  • повышают чувствительность к инсулину;
  • полезны для адекватного функционирования печени;
  • улучшают циркуляцию крови по мышечным тканям;
  • образовывают кластеры, которые транспортируют витамины, питательные вещества, жиросодержащие молекулы по телу;
  • повышают работоспособность.

Польза для нервной системы

Человеческий мозг почти на 30 процентов состоит из фосфолипидов. Это же вещество входит в состав миелиновой субстанции, покрывающей нервные отростки и отвечающей за передачу импульсов. А фосфатидилхолин в комбинации с витамином В5 образует один из важнейших нейромедиаторов, необходимых для передачи сигналов центральной нервной системы. Недостаток вещества ведет к ухудшению памяти, разрушению клеток головного мозга, болезни Альцгеймера, раздражительности, истеричности. Дефицит фосфолипидов в детском организме также губительно влияет на работу нервной системы и мозга, вызывает задержки в развитии.

В связи с этим фосфолипидные препараты применяют, когда надо улучшить мозговую активность или функционирование периферической нервной системы.

Польза для печени

Эссенциале – один из наиболее известных и эффективных медпрепаратов для лечения печени. Эссенциальные фосфолипиды, входящие в состав лекарства, обладают гепатопротекторными свойствами. На печеночную ткань воздействуют по принципу пазлов: молекулы фосфолипидов встраиваются в места «пробелов» с поврежденными участками мембраны. Возобновление структуры клеток активизирует работу печени, в первую очередь в плане дезинтоксикации.

Влияние на обменные процессы

Липиды в человеческом организме образовываются несколькими способами. Но их чрезмерное накопление, в частности в печени, может стать причиной жирового перерождения органа. И за то, чтобы этого не произошло, отвечает фосфатидилхолин. Этот вид фосфолипидов ответственный за переработку и разжижение жировых молекул (облегчает транспортировку и выведение лишнего из печени и других органов).

К слову сказать, нарушение липидного обмена может послужить причиной дерматологических заболеваний (экзема, псориаз, атопический дерматит). Фосфолипиды предотвращают эти неприятности.

Что такое клеточная мембрана

Если провести аналогию с куриным яйцом (разбив скорлупу, аккуратно отделить от нее тонкую полупрозрачную пленочку), то визуально можно представить, что скорлупа — это плотная клеточная оболочка, а пленка — мембрана. Эта картинка очень наглядно позволяет увидеть, каким образом под клеточной стенкой, состоящей из целлюлозы, располагается плазмалемма. Конечно, это представление будет условным, но, действительно, мембрана в переводе с латинского языка означает «кожа». Хотя этот термин достаточно давний, он точно передает сущность мембранной структуры .

Цитолемма (еще одно ее название) животной клетки плотной оболочкой не защищена, однако имеет особый слой, состоящий из белков и жиров, соединенных с сахарами (гликопротеинов и гликолипидов). Называют его гликокаликс, и роль, которую он несет (рецепторная, сигнальная), очень важна для жизнедеятельности.

Строение

Строение структуры уникально, и именно за счет него функции клеточной мембраны выполняются точно и избирательно.

В структуру плазмалеммы входят молекулы:

  • фосфолипидов;
  • гликолипидов;
  • холестерола;
  • белков.

Однако не только такой щедрый химический состав делает цитоплазматическую мембрану особой структурой, все свои функции она выполняет благодаря строгой организации молекул.

Строение плазмалеммы физиологически идеально — двойной слой молекул жиров (липидов), полярно организованных, не дают «своим» выходить за пределы клетки, а «чужим» — проникать внутрь.

Организация плазмалеммы:

  • мембрана состоит из липидов молекулы, которые имеют особое строение;
  • каждый липид имеет два конца — гидрофильная («любящая» воду) головка и гидрофобный («боящийся» воды) хвост;
  • липиды выстроены таким образом, чтобы головки были снаружи, а гидрофобные хвосты внутри;
  • поверхность мембраны гидрофильна (пропускает воду и, соответственно, растворы), а вот внутренняя часть, состоящая из гидрофобных окончаний, воду отталкивает;
  • в основном молекулы липидов содержат остатки фосфорной кислоты (это фосфолипиды), некоторые связаны с углеводами (гликолипиды) и холестеролом;
  • холестерол придает мембране упругость и жесткость;
  • благодаря электростатическим свойствам липиды притягивают молекулы белков, которые также входят в структуру цитолеммы.

Именно белковые молекулы (гранулы) заслуживают отдельного внимания ученых. Из-за своего различного положения и ориентации в полужидкой липидной среде они выполняют самые различные и очень важные функции.

Внутри и на поверхности цитолеммы встречаются следующие виды белков:

  1. Периферические. Эти молекулы расположены на поверхности и в основном выполняют защитную и стабилизирующую функции. Так, они выстраивают ферменты в конвейерные цепи и не позволяют ферментам просто перемещаться вдоль бислоя.
  2. Погруженные внутрь (полуинтегральные). Основная их функция — ферментативная, также они могут участвовать в транспорте веществ. Изучена и еще одна интересная роль этих белков — как переносчиков. Они легко соединяются с транспортируемыми молекулами и проводят их внутрь клетки.
  3. Пронизывающие (интегральные). Они располагаются таким образом, что проходят насквозь, через билипидный слой. Если несколько таких белков сливаются, то образуется канал (пора), через которую могут проходить определенные вещества, связываясь с белковыми молекулами.

Таким образом, все элементы мембранного бислоя несут строго ограниченные своей ролью и строением функции. Благодаря такой организации система работает слаженно и точно.

Отмечено, что плазмалеммы даже внутри одной клетки неоднородны. В них различается не только соотношение химических составных (белков, липидов, углеводов), но и вязкость внутреннего содержимого, ферментативная активность, плотность наружного слоя, толщина.

Месторасположение в клетке

Мембранные структуры буквально пронизывают клеточное содержимое. Они ограничивают все органоиды (за редким исключением, например рибосомы), выстилают их изнутри, являются оболочками ядер.

Самая массивная по содержанию плазмалеммы структура — эндоплазматическая сеть (ЭПР). Если сложить все мембраны, ее составляющие, то получится площадь более половины общей — на все клеточное пространство. По морфологии оболочка ЭПР сходна с внешней ядерной. Они составляют с ней единую систему и обеспечивают активный взаимный перенос элементов.

Комплекс Гольджи — еще один органоид, полностью выполненный из мембранных мешочков (цистерн). Также цитолеммы имеют митохондрии и пластиды.

Плазматическая мембрана — это часть плазмалеммы, находящаяся на границе клеточного содержимого. Она ограничивает протопласт от внешней среды, окружает клетку, защищая его от наружного воздействия.

Антифосфолипидный синдром

В обычной жизни антитела – наши союзники. Эти миниатюрные образования непрерывно стоят на страже человеческого здоровья и даже жизни. Они не позволяют чужеродным объектам, таким как бактерии, вирусы, свободные радикалы, атаковать организм, мешать его работе или разрушать клетки тканей. Но в случае с фосфолипидами, иногда антитела дают сбой. Они начинают «войну» против кардиолипинов и фосфатидилстеринов. В иных случаях «жертвами» антител становятся фосфолипиды с нейтральным зарядом.

Чем чревата подобная «война» в пределах организма, нетрудно догадаться. Без фосфоросодержащих жиров клетки разных видов теряют свою прочность. Но больше всего «достается» кровеносным сосудам и мембранам тромбоцитов. Исследования позволили ученым сделать вывод о том, что синдром АФС есть у каждой 20 беременной из ста и у 4 пожилых людей из сотни исследованных.

В итоге у людей с подобной патологией нарушается работа сердца, в несколько раз повышается риск возникновения инсультов и тромбозов. Антифосфолипидный синдром у беременных вызывает замирание плода, выкидыш, роды раньше срока.

Ссылка на основную публикацию
Похожие публикации
0%